Report on "Contains Animal-Derived Ingredients" Studies 1 and 2

Dr. Adam Feltz Dr. Silke Feltz

Executive Summary

In two studies, we found that people were moderately caring about knowing whether animal-derived ingredients were in products they bought, although they strongly cared about knowing what ingredients were in the products they bought. The dominant reason why they wanted to know what ingredients were in food was for health reasons. There was also a strong majority of people who thought that the ingredients list was where they would look to see a product's ingredients. In both studies, people were much more accurate identifying ingredients as plant-based compared to animal based. In Study 1, people were much better at correctly identifying products with only plant-derived ingredients compared to products with some animal-derived ingredients for both principal display panels and ingredients lists. Study 2 demonstrated that providing disclosures on principal display panels and nutrition labels made people much more accurate at identifying products with some animal-derived ingredients.

Background

In general, there is a substantial literature on consumers' use of food product labels. Consumers are especially likely to use product labels in buying decisions if those labels present information on the front of the package, use minimal numerical information, include graphs and symbols, and use simple adjective or other descriptors (for a review, see (Campos, Doxey, & Hammond, 2011)). While consumers often accurately interpret and use product labels, consumers do not always use product information on labels or interpret that information correctly. Generally, as the computational complexity of the task increases (e.g., conversions, comparisons, calories per 100g to calories per gram), consumer confusion increases (Cowburn & Stockley, 2005; Hall & Osses, 2013; Hess, Visschers, & Siegrist, 2012).

We are aware of no studies that directly test whether consumers can accurately identify if a product contains animal-derived ingredients. There is some evidence that suggests that people can identify products as being animal-based or plant-based based on labeling (e.g., identifying 'almond milk' as being plant-based) (Baptista & Schifferstein, 2023; Feltz & Feltz, 2019; Gleckel, forthcoming). Other evidence suggests that plant-based products that are naturally plant based (i.e., not being designed to mimic traditionally animal-based products. E.g., hummus) are also correctly identified to be plant-based by consumers when they are labeled as such (Stremmel, Elshiewy, Boztug, & Carneiro-Otto, 2022).

Study 1

Survey

In Study 1, we set out to research consumers' interest in and understanding of animal-derived ingredients in food products. Specifically, we had the following research questions:

- 1. Do people care about knowing what ingredients their food has?
- 2. Why do people care about knowing what ingredients their food has?
- 3. Where would participants expect to see disclosures about animal-derived ingredients?
- 4. Can people accurately identify products as plant-based or having some animal-derived ingredients from the principal display panels alone?
- 5. Can people accurately identify products as plant-based or having some animal-derived ingredients from ingredient panels alone?
- 6. Can people identify individual ingredients as plant-based or animal-based?

We created an online survey hosted on Qualtrics and recruited 200 participants from CloudResearch (demographics in Table 1). CloudResearch is an online participant recruitment service. Evidence suggests samples taken from that service are acceptable and often as good as other samples (Douglas, Ewell, & Brauer, 2023).

Basic demographics are reported in Table 1.

Table 1. Demographics for Study 1. Politics was measured on a 1-7 scale where 1 = strongly liberal and 7 = strongly conservative.

	Age	% Male	Politics
Mean	39.345	49	3.320
SD	11.764		1.730
Minimum	18.000		1.000
Maximum	72.000		7.000

Values Results

Study 1 began by asking participants four questions about how much they value knowing food ingredients, how upset they would be to learn about surprise animal-derived ingredients, and how confident they feel about current ingredient labeling. Participants could respond on a scale from 1-6 with 1 =not at all and 6 =very much (or very upset/very confident).

Table 2: Responses to value questions in Study 1.

Values Question	Mean	SD	% > 3.5
How much do you value knowing what	4.870	1.067	91%
ingredients are in your food?			
How much do you value knowing whether	3.770	1.587	61%
a product contains animal-derived			
ingredients?			
How upset would you be to learn that a	3.425	1.667	47%
food you did not expect to contain animal-			
derived ingredients does, in fact, contain			
animal-derived ingredients?			
How confident are you that current	3.770	1.267	64%
ingredient lists contain all the information			
needed to determine whether a product			
has animal-derived ingredients?			

We then asked participants to select all reasons (from seven possible answers and participants could select more than 1 option) why they would be interested in a product's ingredients. Participants overwhelmingly selected "Health Concerns" as the motivating reason for wanting to know ingredients (87%), followed by "Food Allergies" (26%). In the results below (Table 3), the mean represents the percentage of respondents that selected each reason.

Table 3: Percent choosing options for why they are interested in a product's ingredients in Study 1.

Select all of the following reasons why YOU would be interested in a product's ingredients:	%
Kosher	3
Halal	3
Other Religious Reasons	2
Food Allergies	26
Vegan	2
Vegetarian	11
Health Concerns	87

Reading Labels

To get a better understanding of how participants read food labels, we presented them with a sample product packaging and asked where they would look to determine the product's ingredients. (Figure 1)

Figure 1: Product panels and key areas to identify a product's ingredients.

Participants were able to select all answers that applied (i.e., all places they would look to determine ingredients). Table 4 provides the percent of participants who selected the key areas where participants would look to the ingredients list.

Table 4: Percent selecting areas on labels where they would look for ingredients.

On the following food package, select all of the places you would look to determine the product's ingredients:	%
А	12
В	12
С	33
D	13
Е	37
F	83
G	19
Н	9

Identifying Animal-Derived Ingredients

Participants in Study 1 were presented with eight principal display panels and eight ingredients lists from actual products. Four of the principal display panels and four of the ingredients lists were from products that contained animal-derived ingredients, and the other four were from products that did not. Products were presented in random order.

Participants were also given a list of fifteen individual ingredients and asked to select all that are animal derived: Albumen, Agar, Carrageenan, Carmine, Casien, Citric Acid, Gelatin, L-cysteine, Omega-3, Lard, Lanolin, Pepsin, Rennet, Whey, and Xantham Gum.

Examples of principal display (Figure 2) and Ingredient Lists (Figure 3) presented to participants:

Figure 2: Example principal display panels

Figure 3: Example ingredients list.

INGREDIENTS: ENRICHED FLOUR (WHEAT FLOUR, NIACIN, IRON, THIAMINE MONONITRATE, RIBOFLAVIN, FOLIC ACID), LARD, PARTIALLY HYDROGENATED LARD, WATER, HIGH FRUCTOSE CORN SYRUP, SALT, SOY FLOUR.

CONTAINS: WHEAT, SOY

INGREDIENTS: UNBLEACHED WHEAT FLOUR, SEMI-SWEET CHOCOLATE (SUGAR, UNSWEETENED CHOCOLATE, COCOA BUTTER, DEXTROSE, SOY LECITHIN, VANILLA EXTRACT), CANE SUGAR, SAFFLOWER OIL, LEAVENING (BAKING SODA, AMMONIUM BICARBONATE), BROWN RICE SYRUP, SEA SALT.

CONTAINS: SOY, WHEAT

We calculated correctly identifying a products as plant-based or animal-based averaged over the products (or individual ingredients) that were fully plant-based versus those that had some animal-derived ingredients. For the principal display panels and ingredient list, the total possible correct for each set of products was 4. For the individual ingredients, we calculated a percent correct for each of the plant-based and animal-based ingredients. The overall picture was clear: participants were more accurate at identifying plant-based products or ingredients compared to those with animal-derived ingredients. The effects were very strong, and this held true regardless of whether the questions were about principal display panels (Table 5), ingredient lists (Table 6), or individual ingredients (Table 7). Here, the Cohen's d ranged from 0.46 to 1.74, so we found medium to very large effects.

	Ν	Mean	SD
Plant-Based	200	2.200	0.930
Products			
Contains Animal-	200	1.455	0.896
Derived Ingredients			

Table 5. Principal Display Panel Results

t(199) = 6.52, p < .01, Cohen's d = 0.461

Table 6. Ingredients List Results

	Ν	Mean	SD
Plant-Based	200	3.465	0.913
Products			
Contains Animal-	200	1.445	1.069
Derived Ingredients			

t(199) = 19.13, p < .01, Cohen's d = 1.282

Table 7. Individual Ingredients Results. Percent indicates percent correctly identified.

	Ν	%
Plant-Based	200	71
Products		
Contains Animal-	200	28
Derived Ingredients		

$$z = 9.53, p < .01, Cohen's h = 0.55$$

These results have one clear take-away. People on average are better at identifying the plant-based products as plant-based compared to accurately identifying products with animal-derived ingredients as having animal-derived ingredients. Another way to look at these data is that if participants were randomly guessing at the responses, they should on average get 2 correct for each of the principal display panel and ingredients list tasks. But for each of those two tasks, people were significantly worse than chance at accurately identifying the animal-derived products (animal based principal display panel t (199) = 8.61, p < 01, d = 0.61; animal-based ingredients list t(199) = 7.34, p < .01, d =0.52). However, for the plant-based products, they were significantly better than guessing (plantbased principal display panels t(199) = 3.04, p < .01, d = 0.22; plant-based ingredients list t(199) =22.70, p < .01, d = 1.61). For the list of ingredients, if participants were randomly guessing, they would get 50% correct on average. Participants did significantly worse than guessing at identifying the ingredients in a list as animal-based ($\chi = 6.22, p < .01$) but were significantly better than chance at accurately identifying plant-based products (z = 5.99, p < .01). So not only were people better at identifying the plant-based products accurately compared to the animal-based products, people on average did also worse than chance at identifying the animal-based products and better than chance at identifying plant-based products. These results suggested that on average people were less likely to think that animal-based products contained animal-derived ingredients.

Second, while there was no increase in accuracy for animal-based products when comparing the results from the principal display panels and the ingredients list (t(199) = 0.12, p = .91, d = 0.01), people were better at accurately identifying plant-based products when given ingredients lists rather than just principal display panels (t(199) = 14.04, p < .01, d = 0.99). These results suggest that while providing a list of ingredients to people would help them understand plant-based products as plant-based, providing those ingredients alone would not help people identify products with animal-derived ingredients.

Study 2

Survey

In Study 2, we set out to research the efficacy of affirmative disclaimers on the principal display panel or ingredients list on consumers' ability to tell if a food product contains animal-derived ingredients. Specifically, we had the following research questions:

- 1. Do people care about knowing what ingredients their food has?
- 2. Why do people care about knowing what ingredients their food has?
- 3. Where would they expect to see ingredients listed?
- 4. Can people more accurately identify products as having some animal-derived ingredients from the principal display panel with an animal-based disclosure included?
- 5. Can people more accurately identify products as having some animal-derived ingredients from ingredient lists with an animal-based disclosure?
- 6. Can people identify ingredients as plant-based or animal-based?

Again, we used Qualtrics and recruited 206 participants from CloudResearch. Seven participants were excluded for not completing the entire survey. Basic demographics for the remaining 199 are reported in Table 8.

	Age	% Male	Politics
Mean	41.291	49	3.638
Std. Deviation	13.420		1.809
Minimum	18.000		1.000
Maximum	80.000		7.000

Table 8. Basic demographics for Study 2.

Values Results

Study 2 began with the same four questions about how much participants value knowing food ingredients, how upset they would be to learn about surprise animal-derived ingredients, and how confident they feel about current ingredient labeling. Participants could respond on a scale from 1-6 with 1 = not at all and 6 = very much (or very upset/very confident). Descriptive statistics reported in Table 9.

Table 9.	Results	from	the	value	questions	in	Study 2	2.
----------	---------	------	-----	-------	-----------	----	---------	----

Values Question	Mean	SD	% > 3.5
How much do you value knowing what	4.779	1.069	85.9%
ingredients are in your food?			
How much do you value knowing whether	3.683	1.519	54.7%
a product contains animal-derived			
ingredients?			
How upset would you be to learn that a	3.467	1.657	50.7%
food you did not expect to contain animal-			
derived ingredients does, in fact, contain			
animal-derived ingredients?			
How confident are you that current	3.623	1.327	55.8%
ingredient lists contain all the information			
needed to determine whether a product			
has animal-derived ingredients?			

As in Study 1, we also asked participants to select all reasons (from seven possible answers) why they would be interested in a product's ingredients. Again, participants overwhelmingly selected "Health Concerns" as the motivating reason for wanting to know ingredients (87.9%), followed by "Food Allergies" (32.7%). Participants could select more than one option. Percent of participants selecting each option is reported in Table 10.

Table 10. Percent selection reasons for being interested in a product's ingredients.

Select all of the following reasons why YOU would be interested in a product's ingredients:	%
Kosher	5
Halal	1
Other Religious Reasons	5
Food Allergies	33
Vegan	3
Vegetarian	11
Health Concerns	88

Reading Labels

As in Study 1, we presented participants with a sample product packaging and asked where they would look to determine the product's ingredients. Participants were able to select all answers that applied (i.e., all places they would look to determine ingredients). Table 11 reports the percentages of people who selected the areas. The results again found that most participants would look to the ingredients list.

On the following food package, select all of the places you would look to determine the product's ingredients:	%
А	12
В	11
С	25
D	9
Е	47
F	83
G	22
Н	8

Table 11. Percentages of participants selecting locations on labels.

Identifying Animal-Derived Ingredients

The next set of analyses we ran were to determine if including a disclosure helped people's accuracy at identifying the products as animal-based. We selected eight photos of principal display panels and eight ingredients lists from actual products. Then, for each product, we created a version of the principal display panels and the ingredients list with a disclaimer that the product contained animal-derived ingredients. All products contained animal-derived ingredients.

Examples of principal display panels with (right panel) and without disclaimers (left panel), as presented to participants, are in Figure 4.

KIND

Dark Chocolate Nuts & Sea Salt

5g SUGAR | 6g PROTEIN

GLUTEN FREE

6 BARS 6 - 1.4 0Z (40g) BARS NET WT, 8.4 0Z (240g)

#1 INGREDIENT HEART HEALTHY ALMONDS

KIND

Dark Chocolate Nuts & Sea Salt

5g SUGAR | 6g PROTEIN

GLUTEN FREE CONTAINS ANIMAL-DERIVED INGREDIENTS

6 BARS 6 - 1.4 OZ (40g) **BARS** NET WT. 8.4 OZ (240g) (0)

#1 INGREDIENT

HEART HEALTHY

Example of ingredients list without (upper panel) and with (lower panel) disclaimers (Figure 5).

Figure 5. Example of ingredients list in Study 2.

INGREDIENTS: PEANUTS, CONTAINS LESS THAN 2% OR LESS OF: SEA SALT, SPICES (CONTAINS CELERY), DRIED ONION, DRIED GARLIC, PAPRIKA, NATURAL FLAVOR, SUGAR, CORN STARCH, GELATIN, TORULA YEAST, MALTODEXTRIN, DRIED CORN SYRUP.

CONTAINS: PEANUT

INGREDIENTS: PEANUTS, CONTAINS LESS THAN 2% OR LESS OF: SEA SALT, SPICES (CONTAINS CELERY), DRIED ONION, DRIED GARLIC, PAPRIKA, NATURAL FLAVOR, SUGAR, CORN STARCH, GELATIN, TORULA YEAST, MALTODEXTRIN, DRIED CORN SYRUP.

CONTAINS: PEANUT AND ANIMAL-DERIVED INGREDIENTS

Participants were randomly shown four photos without a disclaimer and four photos with a disclaimer, as well as four ingredients lists without a disclaimer and four ingredients lists with a disclaimer. For each of the eight principal display panels and eight ingredients lists, participants were asked: "Does the following product contain animal-derived ingredients?" Correct answers were coded as 1 and incorrect answers as 0.

In analyzing the results, we looked at overall proportion correct as a function of having the disclosure that the products contained animal-derived ingredients. The results show that the disclaimer helped participants understand whether a product contained animal-derived ingredients (see Tables 12 and 13 for χ^2 tests and odds ratios). All the effects were large and in the same direction (see Figures 6 and 7 for a bar graph of percentages correct for each product as a function of disclosures).

Product	χ^2	p	Odds Ratio
Thomas' Original English	85.01	< .01	25.28
Muffins			
Doritos Salsa Verde	114.58	< .01	52.63
Haribo Goldbears	80.03	< .01	26.54
Rosarita Traditional Refried	95.13	< .01	32
Beans			
Rao's Homemade Basil Pesto	108.78	< .01	45.45
KIND Dark Chocolate Nuts	119.13	< .01	76.93
& Sea Salt			
Progresso Southwest-Style	107.52	< .01	52.57
Black Bean Soup			
Total 100% Whole Grain	123.21	< .01	111.11
Flakes			

Table 12. Principal Display Panel Results Statistical Tests for Study 2. Odds ratios indicates how many times more likely participants in the disclosed condition could accurately identify the products.

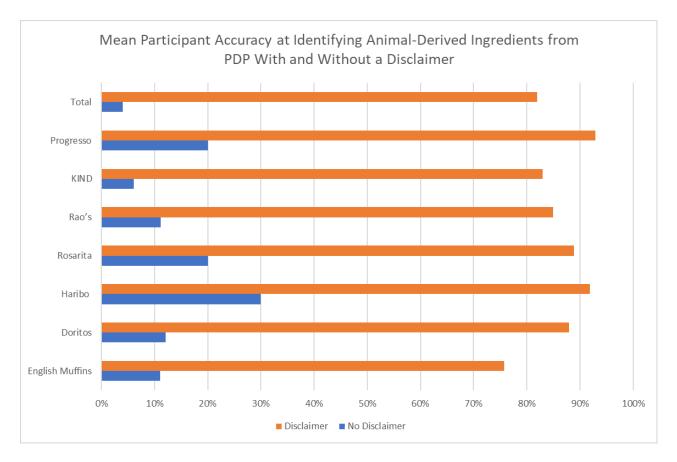


Figure 6. Mean percent correct for principal display panels in Study 2 as a function of disclosures.

Table 13. Ingredients label statistical tests for Study 2.

Product	χ^2	p	Odds Ratio
Planters Dry Roasted Peanuts	80.73	< .01	32.26
KIND Dark Chocolate Nuts	113.18	< .01	100.42
& Sea Salt			
Willy Wonka Grape &	150.12	< .01	204.41
Strawberry Nerds			
Chef Pierre 9" Unbaked Pie	79.96	< .01	53.93
Shells			
Rosarita Spicy Jalapeño	74.54	< .01	47.62
Refried Beans			
WinCo Bagels	160.93	< .01	333.33
Great Value Gummy Worms	75.61	< .01	26.32
General Mills Apple	763.92	< .01	763.92
Cinnamon Cheerios			

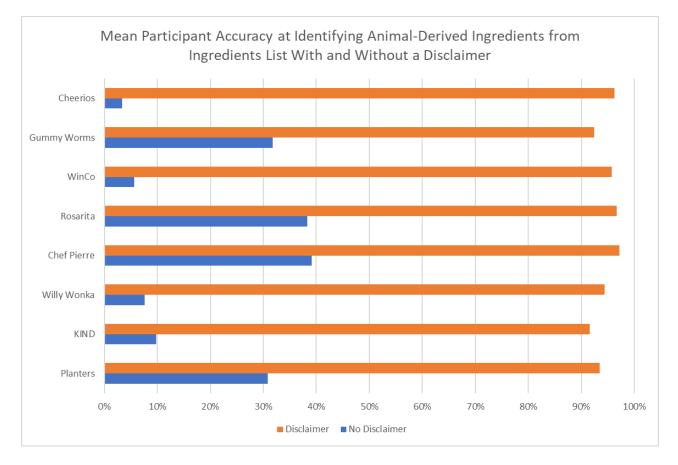


Figure 7. Mean percent correct for ingredients list in Study 2 as a function of disclosures.

As with Study 1, we also presented participants a list of fifteen individual ingredients. Replicating the results from Study 1, participants were better at identifying the plant-based ingredients than the animal-based ingredients.

Table 14. Individual Ingredients Results. Percent indicates percent correctly identified for Study 2.

	Ν	%
Plant-Based	199	86
Products		
Contains Animal-	199	29
Derived Ingredients		

$$z = 12.52, p < .01, Cohen's h = 0.56$$

The results from Study 2 replicated the results from Study 1 concerning caring about knowing what ingredients a product has, reasons for caring, location one would look to find ingredients, accuracy identifying animal-based products without disclosures, and accuracy identifying plant-based and animal-based ingredients from a list of ingredients. However, Study 2 also suggested that there is a very large increase with a simple change to labeling—including a disclosure that the product contains animal derived ingredients.

adam Ity Silke Feltz

More Detailed Analyses of the Animal-Ingredient Label Survey Data

Study 1

Below are the full t-test results for the PDP comparison based on number correct for each of plantbased and animal-based products:

								95% CI for	Cohen's d
Measure 1		Measure 2	t	df	р	Cohen's d	SE Cohen's d	Lower	Upper
PDPPBTOT	-	PDPABTOT	6.518	199	< .001	0.461	0.132	0.315	0.606

Descriptives

Descriptives

	Ν	Mean	SD	SE	Coefficient of variation
PDPPBTOT	200	2.200	0.930	0.066	0.423
PDPABTOT	200	1.455	0.896	0.063	0.615

Below are the full t-test results for the Ingredients List comparison:

								95% CI for	Cohen's
Measure 1	Mea	isure 2	t	df	р	Cohen's d	SE Cohen's d	Lower	Upper
NutritionPBTOT -	Nutriti	onABTOT	18.133	199	< .001	1.282	0.151	1.094	1.468
<i>lote.</i> Student's t-test.									
escriptives									
Descriptions									
Descriptives			SD	<pre></pre>	E (Coefficient of va	riation		
Descriptives	N	Mean	30	~					
Descriptives NutritionPBTOT	N 200	Mean 3.465	0.913		065	0.2	63		

Below are the full percent correct for each of the Individual Ingredients task:

Frequency Tables

Frequencies for Albumen						
Albumen Frequency Percent Valid Percent Cumulative Percent						
160	80.000	80.000	80.000			
40	20.000	20.000	100.000			
0	0.000					
200	100.000					
	equency 160 40 0	equency Percent Va 160 80.000 40 20.000	equency Percent Valid Percent Cum 160 80.000 80.000 40 20.000 20.000 0 0.000 0			

Frequencies for Agar

Agar	Frequency	Percent	Valid Percent	Cumulative Percent
0	192	96.000	96.000	96.000
1	8	4.000	4.000	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Carrageenan

Carrageen	an Frequency	Percent	Valid Percent	Cumulative Percent
0	13	6.500	6.500	6.500
1	187	93.500	93.500	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Carmine

Carmine F	requency	Percent	Valid Percent Cum	ulative Percent
0	174	87.000	87.000	87.000
1	26	13.000	13.000	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Casien

Casien	Frequency	Percent	Valid Percent Cum	ulative Percent
0	147	73.500	73.500	73.500
1	53	26.500	26.500	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies	Frequencies for Cirtic Acid						
Cirtic Acid	Frequency	Percent	Valid Percent Cu	umulative Percent			
0	6	3.000	3.000	3.000			
1	194	97.000	97.000	100.000			
Missing	0	0.000					

200 100.000

Frequencies for Gelatin

Total

Gelatin Fr	equency	Percent	Valid Percent Cum	lative Percent
0	57	28.500	28.500	28.500
1	143	71.500	71.500	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for L-cysteine

L-cysteine	e Frequency	Percent	Valid Percent	Cumulative Percent
0	183	91.500	91.500	91.500
1	17	8.500	8.500	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Omega-3

Omega-3	Frequency	Percent	Valid Percent Cu	mulative Percent
0	69	34.500	34.500	34.500
1	131	65.500	65.500	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Lard

Lard	Frequency	Percent	Valid Percent Cum	ulative Percent
0	35	17.500	17.500	17.500
1	165	82.500	82.500	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Lanolin

Lanolin Fr	equency	Percent	Valid Percent Cum	ulative Percent
0	200	100.000	100.000	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Pepsin

Pepsin	Frequency	Percent	Valid Percent Cum	lative Percent
0	180	90.000	90.000	90.000
1	20	10.000	10.000	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Rennet

rrequencies for Kennet					
Rennet Fr	equency	Percent V	Valid Percent Cum	ulative Percent	
0	163	81.500	81.500	81.500	
1	37	18.500	18.500	100.000	
Missing	0	0.000			
Total	200	100.000			

Frequencies for Whey

Whey	Frequency	Percent	Valid Percent Cum	ulative Percent
0	146	73.000	73.000	73.000
1	54	27.000	27.000	100.000
Missing	0	0.000		
Total	200	100.000		

Frequencies for Xantham Gum

Xantham Gu	ım Frequency	Percent	Valid Percent	Cumulative Percent
0	14	7.000	7.000	7.000
1	186	93.000	93.000	100.000
Missing	0	0.000		
Total	200	100.000		

Study 2

Below are the full chi-squared results for the PDP comparison:

Contingency Tables

Contingency	Tables
	LabalSa

LabelSet3v2				
EnglishMufin	2	3	Total	
0	89	24	113	
1	11	75	86	
Total	100	99	199	

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	85.014	1	< .001
Ν	199		

Odds Ratio

			95% Confidence Intervals					
		0	dds Ratio	Lower	Upper	р		
Odds ratio			25.284	11.626	54.989			
Fisher's ex	act test		24.706	11.008	60.207 <	< .001		
Continger	ncy Tab	les						
	LabelSe	et3v2						
Doritos	2	3	Total					
0	12	87	99					
1	88	12	100					
Total	100	99	199					
	100							
Chi-Squa	red Test	S						

	Value	df	р
\mathbf{X}^2	114.576	1	<.001
Ν	199		

95% Confidence Intervals			
Odds Ratio	Lower	Upper	р
0.019	0.008	0.044	
0.020	0.007	0.047 <	< .001
v2			
	Odds Ratio 0.019 0.020	Odds Ratio Lower 0.019 0.008 0.020 0.007	Odds Ratio Lower Upper 0.019 0.008 0.044 0.020 0.007 0.047 <

Odds Ratio

			9	5% Confide	ence Intervals		
		C	Odds Ratio	Lower	Upper		
Haribo	2	3	Total				
0	70	8	78				
1	30	91	121				
Total	100	99	199				

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	80.031	1	< .001
N	199		

Odds Ratio

			95% Confidence Intervals					
			Odds Ratio	Lower	Upper	р		
Odds ratio			26.542	11.460	61.470			
Fisher's exa	ct test		25.951	10.910	70.052 <	.001		
Contingen	cy Tabl	les						
Ι	abelSe	t3v2						
Rosarita	2	3	Total					
0	80	11	91					
1	20	88	108					
Total	100	99	199					

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	95.131	1	<.001
Ν	199		

			95% Confidence Intervals					
			Odds Ratio	Lower	Upper	р		
Odds ratio			32.000	14.442	70.904			
Fisher's exa	act test		31.170	13.614	77.648 <	< .001		
Contingen	cy Tab	les						
I	LabelSe	et3v2	2					
Raows	2	3	Total					
0	15	88	103					
1	85	11	96					
Total	100	99	199					

Chi-Squared Tests Value df p X² 108.777 1 < .001</td> N 199

Odds Ratio

		95% Confidence Intervals					
		C	Odds Ratio	Lower	Upper	р	
Odds ratio			0.022	0.010	0.051		
Fisher's exa	ct test		0.023	0.009	0.054 <	< .001	
Contingen	cy Tabl	les					
L	abelSe	t3v2					
Kindbar	2	3	Total				
0	17	93	110				
1	83	6	89				
Total	100	99	199				

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	119.125	1	<.001
Ν	199		

				95% Confiden	ce Intervals	
		Odds	Ratio	Lower	Upper	р
Odds ratio			0.013	0.005	0.035	
Fisher's exact test	t		0.014	0.004	0.037	< .001
Contingency Tal	bles					
	LabelS	et3v2				
Progresso	2	3	Total			
0	80	7	87			
1	20	92	112			
Total	100	99	199			

	Value df p	
\mathbf{X}^2	107.536 1 < .00	1
Ν	199	

			9	5% Confide	nce Intervals	
			Odds Ratio	Lower	Upper	р
Odds ratio			52.571	21.132	130.786	
Fisher's ex	Fisher's exact test		50.960	19.880	150.424 <	< .001
Contingen	cy Tab	les				
]	LabelSe	et3v2				
Total	2	3	Total			
0	18	95	113			
1	82	4	86			
Total	100	99	199			

Value df p

Odds Ratio

		95% Confide	nce Intervals	
	Odds Ratio	Lower	Upper	р
Odds ratio	0.009	0.003	0.028	
Fisher's exact test	0.010	0.002	0.030 <	< .001

Below are the full t-test results for the Ingredient List comparison:

Contingency Tables

Contingency Tables					
P	lanters	Nutrition			
NutritionSe3v2	0	1	Total		
2	6	86	92		
3	74	33	107		
Total	80	119	199		

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	80.733	1	< .001
Ν	199		

Odds Ratio

Odds Ratio						
		95% Confide	nce Intervals			
	Odds Ratio	Lower	Upper	р		
Odds ratio	0.031	0.012	0.078			
Fisher's exact test	0.032	0.010	0.082 <	< .001		

Contingency Tables

Contingency Tables					
	Kin	dBarl	Nutrition		
NutritionSe3v2		0	1	Total	
2	83		9	92	
3	9		98	107	
Total	92		107	199	

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	133.176	1	< .001
N	199		

Odds Ratio

			95% Confi	dence Intervals	
	Odds	Ratio	Lower	Upper	р
Odds ratio	100.42	20	38.102	264.661	
Fisher's exact test	95.3	73	35.030	296.394 <	< .001
Contingency Tal	oles				
	WillyW	Onka			
NutritionSe3v2	0	1	Total		
2	85	7	92		
3	6	101	107		
Total	91	108	199		

Chi-Squared Tests

	Value	df	b p
\mathbf{X}^2	150.120	1	<.001
Ν	199		

		95% Confide	nce Intervals	
	Odds Ratio	Lower	Upper	р
Odds ratio	204.405	66.166	631.465	
Fisher's exact test	189.870	59.755	757.895 <	< .001
Contingency Table	es			
C				

Odds Ratio

				95% Confi	dence Intervals	
		Odds R	atio	Lower	Upper	р
NutritionSe3v2	0	1		Total		
2	56	36	92	2	-	
3	3	104	107	1		
Total	59	140	199)		

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	79.962	1	< .001
Ν	199		

Odds Ratio

				95% Confide	nce Intervals	
		Odds Ra	atio	Lower	Upper	р
Odds ratio		53.926		15.892	182.981	
Fisher's exact test		52.702		15.656	277.614	<.001
Contingency Tab	les					
	Ros	arita_39				
NutritionSe3v2	0	1		Total		
2	3	89	92			
3	66	41	107	,		
Total	69	130	199	1		

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	74.538	1	<.001
Ν	199		

		95% C			Confidence Intervals		
		Odds Ra	tio	Lower	Upper	_ р	
Odds ratio		0.021	L	0.006	0.071		
Fisher's exact test	t	0.021	l	0.004	0.071	< .001	
Contingency Ta	bles						
		Winco					
NutritionSe3v2	0	1	٦	otal			
2	4	88	92	2			
3	101	6	107	7			
Total	105	94	199)			

$\begin{tabular}{|c|c|c|c|} \hline \hline Chi-Squared Tests \\ \hline \hline Value & df & p \\ \hline X^2 & 160.925 & 1 < .001 \\ \hline N & 199 \\ \hline \end{tabular}$

Odds Ratio

		9	5% Confide	nce Intervals				
	Odds R	atio	Lower	Upper	р			
Odds ratio	0.003		0.001	0.010				
Fisher's exact test	0.003		0.001	0.011 <	< .001			
Contingency Tabl	Contingency Tables							
(Gummywo	orms						
NutritionSe3v2	0	1	Total					
2	7	85	92					
3 7	73	34	107					
Total 8	30	119	199					

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	75.606	1	< .001
Ν	199		

				95%	Confide	nce Inte	rvals	
		Odds Rat	io	Lower		Upper		_ р
Odds ratio		0.038		0.016			0.092	
Fisher's exact test		0.039		0.014			0.096	< .001
Contingency Tal	oles							
	(Cheerios						
NutritionSe3v2	0	1	Τ	'otal				
2	89	3	92	2				
3	4	103	107	7				
Total	93	106	199)				
-	•							
Chi-Squared Tes	sts	_						
Value df	р							
X2 171 074 1	0.0.1	-						

	Value	df	́р
\mathbf{X}^2	171.874	1	<.001
Ν	199		

Odds Ratio

	95% Confidence Intervals				
	Odds Ratio	Lower	Upper	р	
Odds ratio	763.917	166.480	3505.341		
Fisher's exact test	671.402	143.882	6338.352 <	:.001	

Below are the full frequency of results for the Individual Ingredients comparison:

Frequency Tables

Frequencies for Albumen							
Albumen	Frequency	Percent	Valid Percent	Cumulative Percent			
0	168	84.422	84.422	84.422			
1	31	15.578	15.578	100.000			
Missing	0	0.000					
Total	199	100.000					

Frequencies for Agar

Agar	Frequency	Percent	Valid Percent C	umulative Percent
0	17	8.543	8.543	8.543
1	182	91.457	91.457	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Carrageenan

Carrageena	an Frequency	Percent	Valid Percent	Cumulative Percent
0	30	15.075	15.075	15.075
1	169	84.925	84.925	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Carmine

Carmine	requency	Percent	Valid Percent Cum	ulative Percent
0	174	87.437	87.437	87.437
1	25	12.563	12.563	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Casien

Casien	Frequency	Percent	Valid Percent	Cumulative Percent
0	144	72.362	72.362	72.362
1	55	27.638	27.638	100.000
Missing	0	0.000		

Frequencies for Casien

Casien	Frequency	Percent V	Valid Percent Cumulative Percent
Total	199	100.000	

Frequencies for Cirtic Acid

Cirtic Acid	l Frequency	Percent	Valid Percent Cum	ulative Percent
1	199	100.000	100.000	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Gelatin

Gelatin F	requency	Percent	Valid Percent Cum	ulative Percent
0	53	26.633	26.633	26.633
1	146	73.367	73.367	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for L-cysteine

L-cysteine	e Frequency	Percent	Valid Percent	Cumulative Percent
0	189	94.975	94.975	94.975
1	10	5.025	5.025	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Omega-3

Omega-3H	Frequency	Percent	Valid Percent Cun	nulative Percent
0	68	34.171	34.171	34.171
1	131	65.829	65.829	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Lard

Lard	Frequency	Percent	Valid Percent Cumu	lative Percent
0	40	20.101	20.101	20.101
1	159	79.899	79.899	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Lanolin				
Lanolin Frequency Percent Valid Percent Cumulative Percent				
0	154	77.387	77.387	77.387

Frequencies for Lanolin

Frequencies for Lanolin					
Lanolin Frequency Percent Valid Percent Cumulative Percent					
1	45	22.613	22.613	100.000	
Missing	0	0.000			
Total	199	100.000			

Frequencies for Pepsin

Pepsin	Frequency	Percent	Valid Percent Cu	imulative Percent
0	178	89.447	89.447	89.447
1	21	10.553	10.553	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Rennet

Rennet 1	Frequency	Percent	Valid Percent C	umulative Percent
0	154	77.387	77.387	77.387
1	45	22.613	22.613	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Whey

Whey	Frequency	Percent	Valid Percent Cu	mulative Percent
0	156	78.392	78.392	78.392
1	43	21.608	21.608	100.000
Missing	0	0.000		
Total	199	100.000		

Frequencies for Xantham Gum								
Xantham Gun	n Frequency	Percent	Valid Percent Cu	mulative Percent				
0	14	7.035	7.035	7.035				
1	185	92.965	92.965	100.000				
Missing	0	0.000						
Total	199	100.000						

Comparing Results Across Studies

A visual inspection of the data suggested that people were worse at identifying animal-based products in Study 2 compared to Study 1 for both the principal display panel and ingredients list tasks. One potential explanation for this is that when people are given disclosures for some products, they may assume that non-disclosed products do not have animal-derived ingredients when they really do, hence influencing their decisions. Of course, when disclosures are provided, people are very good at identifying that the product contains animals products. But perhaps Study 2 over-estimates the effect because of the methods we used. To help address this worry, we ran some supplemental analyses where we compared the same products principal display panels (i.e. English Muffin, Haribo, Rosarita, and Kind Bar) and ingredients list (i.e., Planters, Kind Bar, and Willy Wonka) that were common in both Studies 1 and 2. Since there were no disclosures in Study 1, the presence of disclosures for other products cannot influence responses. The results suggest that while there may be some effect of disclosures on the magnitude of the difference between disclosed and non-disclosed products, the size of that difference is small especially when compared to the very large effect of disclosures.

Here, there were two key contrasts. First, we contrasted the potential effect of disclosures on ratings of the same non-disclosed products between Studies 1 and 2. Second, we tested the differences between the non-disclosed product in Study 1 and the disclosed product in Study 2.

The first set of analyses compared the non-disclosed products from Studies 1 and 2 concerning the principal display panels (equivalent ORs from 1.96-2.91).

Contingency Tables

Contingency Tables						
I	EnglishMufin					
LabelSet3v2	0	1	Total			
1	147	53	200			
2	89	11	100			
Total	236	64	300			

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	9.544	1	0.002
Ν	300		

	95% Confidence Intervals				
	Odds Ratio	Lower	Upper	р	
Odds ratio	0.343	0.170	0.691		
Fisher's exact test	0.344	0.154	0.710	0.002	

Odds Ratio

				95% Confide	ence Intervals
		Odds	Ratio	Lower	Upper
Contingency 7	Fables				
	Hari	bo			
LabelSet3v2	0	1	Tota l		
1	109	91	200		
2	70	30	100		
Total	179	121	300		

Chi-Squared Tests

	Value di	fр
X^2	6.655 1	0.010
Ν	300	

Odds Ratio

95% Confidence Intervals			
Odds Ratio	Lower	Upper	р
0.513	0.308	0.855	
0.514	0.297	0.879 (0.012
	Odds Ratio 0.513	Odds Ratio Lower 0.513 0.308	Odds Ratio Lower Upper 0.513 0.308 0.855

Contingency Tables

	Rosarita		
LabelSet3v2	0	1	Total
1	134	66	200
2	80	20	100
Total	214	86	300

Chi-Squared Tests

	Value	df	р	
X²	5.510	1	0.019	
Ν	300			

	95% Confidence Intervals				
	Odds Ratio	Lower	Upper	р	
Odds ratio	0.508	0.287	0.899		
Fisher's exact test	0.509	0.271	0.925 (0.021	

Contingency Tables

Contingency Tables						
	Kindbar					
LabelSet3v2	0	1	Total			
1	168	32	200			
3	93	6	99			
Total	261	38	299			

Chi-Squared Tests

 Value df
 p

 X²
 5.897
 1
 0.015

 N
 299
 299
 299

Odds Ratio

	95% Confidence Intervals					
	Odds Ratio	Lower	Upper	р		
Odds ratio	0.339	0.137	0.840			
Fisher's exact test	0.340	0.112	0.864	0.016		

We conducted similarly analyses for the Ingredient List Task. Equivalent ORs 1.76-2.3.

Contingency Tables

Contingency Tab	oles		
P	lantersN	utrition	
NutritionSe3v2	0	1	Total
1	112	88	200
3	74	33	107
Total	186	121	307

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	5.055	1	0.025
Ν	307		

		95% Confide	nce Intervals	
	Odds Ratio	Lower	Upper	р
Odds ratio	0.568	0.346	0.932	_
Fisher's exact test	0.569	0.333	0.957	0.028

Contingency Tables

Contingency Tables

K	KindBarNutrition						
NutritionSe3v2	0	1	Total				
1	160	40	200				
2	83	9	92				
Total	243	49	292				

Chi-Squared Tests

Value df p X² 4.711 1 0.030 292 Ν

Odds Ratio

			9	5% Confid	ence Interval	5
		Odds	Ratio	Lower	Upper	р
Odds ratio		0.43	34	0.201	0.937	
Fisher's exact test	ţ	0.43	35	0.177	0.967	0.030
Contingency Tal	bles					
	Wi	illyWO	Inka			
NutritionSe3v2		0	1	Total		
1	173		27	200		
2	85		7	92		
Total	258		34	292		
Chi-Squared Te	sts					

-Squared res

	Value	df	р
X^2	2.126	1	0.145
Ν	292		

	9	95% Confider	nce Intervals	
	Odds Ratio	Lower	Upper	р
Odds ratio	0.528	0.221	1.261	
Fisher's exact test	0.529	0.187	1.310 (0.172

The second set of analyses compared the non-disclosed products from Study 1 with the disclosed products from Study 2 for both the principal display panel task and the ingredients list task.

First, the results from the principal display panel task. ORs 8.67-25.63

Contingency Tables

Contingency	Tables		
	English	Mufin	
LabelSet3v2	0	1	Total
1	147	53	200
3	24	75	99
Total	171	128	299

Chi-Squared Tests

 Value df
 p

 X²
 65.626
 1 < .001</td>

 N
 299
 299

Odds Ratio

			9	5% Confide	nce Intervals	
		Odds	Ratio	Lower	Upper	р
Odds ratio			8.667	4.967	15.124	
Fisher's exact t	test		8.593	4.808	15.799 <	.001
Contingency 7	Fables	5				
	Hari	ibo				
LabelSet3v2	0	1	Tota l			
1	109	91	200			
3	8	91	99			
Total	117	182	299			

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	59.907	1	< .001
Ν	299		

	9	95% Confide	ence Intervals	
	Odds Ratio	Lower	Upper	р
Odds ratio	13.625	6.280	29.560	
Fisher's exact test	13.509	6.143	33.983 <	< .001
Contingency Table	es			

Odds Ratio

	95% Confidence Intervals					
		Odds	Ratio	Lower	Upper	
	Rosa	rita	_			
LabelSet3v2	0	1	Tota 1			
1	134	66	200			
3	11	88	99			
Total	145	154	299			

Chi-Squared Tests

 Value df
 p

 X²
 82.813
 1 < .001</td>

 N
 299
 299

Odds Ratio

	95% Confidence Intervals			
	Odds Ratio	Lower	Upper	р
Odds ratio	16.242	8.125	32.468	
Fisher's exact test	16.074	7.891	35.727 <	.001

Contingency Tables

Contingency Tables

	Kino		
LabelSet3v2	0	1	Total
1	168	32	200
2	17	83	100
Total	185	115	300

Chi-Squared Tests

	Value	df	р
\mathbf{X}^2	126.599	1	<.001
Ν	300		

	95% Confidence Intervals			
	Odds Ratio	Lower	Upper	р
Odds ratio	25.632	13.457	48.822	
Fisher's exact test	25.217	12.907	51.734 <	:.001

Next the results from the ingredients list task. ORs 18.24-107.86.

Contingency Tables

Contingency Tables

K	KindBarNutrition			
NutritionSe3v2	0	1	Total	
1	160	40	200	
3	9	98	107	
Total	169	138	307	

Chi-Squared Tests

 $\begin{tabular}{|c|c|c|c|c|c|} \hline \hline Value & df & p \\ \hline \hline X^2 & 144.370 & 1 < .001 \\ \hline N & 307 \end{tabular}$

Odds Ratio

			95% Confi	idence Intervals	
	Odds	Ratio	Lower	Upper	р
Odds ratio	43.55	6	20.257	93.653	
Fisher's exact test	42.77	'4	19.537	104.756 <	.001
Contingency Tal	bles				
	WillyW	Onka			
NutritionSe3v2	0	1	Total		
1	173	27	200		
3	6	101	107		
Total	179	128	307		
Chi-Squared Te	sts				

	Value	df	р
\mathbf{X}^2	187.632	1	<.001
Ν	307		

	95% Confidence Intervals			
	Odds Ratio	Lower	Upper	р
Odds ratio	107.858	43.069	270.111	
Fisher's exact test	104.782	41.269	322.125 <	:.001

Contingency Tables

Contingency Tables					
PlantersNutrition					
NutritionSe3v2	0	1	Total		
1	112	88	200		
2	6	86	92		
Total	118	174	292		

Chi-Squared Tests

 Value df
 p

 X² 64.062
 1 < .001</td>

 N
 292

	95% Confidence Intervals			
	Odds Ratio	Lower	Upper	р
Odds ratio	18.242	7.617	43.692	
Fisher's exact test	18.082	7.490	52.986 <	.001

References

- Baptista, I., & Schifferstein, H. (2023). Milk, mylk or drink: Do packaging cues affect consumers' understanding of plant-based products? *Food Quality and Preferences*, *108*, 104885.
- Campos, S., Doxey, J., & Hammond, D. (2011). Nutrition labels on pre-packaged foods: a systematic review. *Public Health and Nutrition*, 14(8), 1496-1506. doi:10.1017/S1368980010003290
- Cowburn, G., & Stockley, L. (2005). Consumer understanding and use of nutrition labelling: A systematic review. *Public Health and Nutrition, 8*, 21-28.
- Douglas, B. D., Ewell, P. J., & Brauer, M. (2023). Data quality in online human-subjects research: Comparisons between MTurk, Prolific, CloudResearch, Qualtrics, and SONA. *Plos One*, 18(3), e0279720. doi:10.1371/journal.pone.0279720
- Feltz, S., & Feltz, A. (2019). Consumer accuracy at identyfing plant-based and animal-based milk products. *Food Ethics*, *4*, 85-112.
- Gleckel, J. (forthcoming). Are Consumers Really Confused by Plant-Based Food Labels? An Empirical Study. Retrieved from <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3727710</u>
- Hall, C., & Osses, F. (2013). A review to inform understanding of the use of food safety messages on food labels. *International Journal of Consumer Studies, 37*, 422-432.
- Hess, R., Visschers, V. H., & Siegrist, M. (2012). The role of health-related, motivational and sociodemographic aspects in predicting food label use: a comprehensive study. *Public Health* and Nutrition, 15(3), 407-414. doi:10.1017/S136898001100156X
- Stremmel, G., Elshiewy, O., Boztug, Y., & Carneiro-Otto, F. (2022). Vegan labeling for what is already vegan: Product perceptions and consumption intentions. *Appetite*, 175, 106048. doi:10.1016/j.appet.2022.106048